
Array Transposition in SSD http:tlwww.nas.nasa.govlResearc...HTML/RNR-89-012/RN R-89-012.html

Array Transposition in SSD

David H. Bailey
October 3, 1989

Abstract

One obstacle to running very large two- and three-dimensional codes on the Cray X-MP and
Y-MP systems is to efficiently perform array transpositions using SSD storage. This article
discusses how such transpositions can be performed by means of algorithms that feature
exclusively unit stride, long vector transfers between main memory and SSD, and which only
require a single pass through the data (provided sufficient main memory buffers are available).

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA
Ames Research Center, Moffett Field, CA 94035.

Introduction

The limited main memory on X-MP and Y-MP (compared to the Cray-2) has led some users of
very large 2-D and 3-D simulation codes to consider using the SSD (solid state device)
memory system. For some of these codes, not all of the necessary arrays need be present in
main memory at any one time, and so such codes can run fairly efficiently using SSD. For
other codes, however, it is not convenient to segregate the data in this fashion.

One situation that is particularly challenging to handle in SSD is a very large 2-D or 3-D array
that must be accessed by each dimension. Accessing such arrays in SSD by the first
dimension is not difficult, since in Fortran this is the natural storage order. Accessing by the
second or third dimension amounts to accessing the array with a very large stride, which
renders SSD access inefficient. This is because SSD access, like disk access, is only efficient
when done with large blocks of contiguous data.

One way to solve this problem is to perform an array transposition after accessing the array by
the first dimension. Then subsequent computation can again be done with large vector, unit
stride data accesses. Depending on the circumstances, additional array transpositions may be
necessary, including one to restore the array to its original ordering. What this means is that if
an efficient means can be found to transpose an array in an external memory such as SSD,
then large 2-D and 3-D codes could be executed on the X-MP and Y-MP without prohibitive
I/O cost. This article will describe two methods for array transposition in an external memory
such as SSD. Each of these methods employs exclusively large block, contiguous data
transfers between main and external memory, and each requires only a single read-write pass
through the data, provided sufficient main memory buffer space is available.

Fraser's Algorithm

Probably the most efficient algorithm currently known to transpose data in external storage is
due to Fraser [1,2]. A particularly attractive aspect of this algorithm is that it can easily be
tuned for maximum efficiency on a given system. It is easier to exhibit an example of Fraser's
algorithm than to precisely state it. Suppose one wishes to transpose a r_l x r_ matrix on an

external random access dataset into a r_ x rh matrix, where r_l = 12.8 = 2.7 and r_ = 2.56 = _.

Suppose also that the size of an efficient I/O block is 64: = 2_ (on a Cray SSD system it is 512).

Finally, suppose that two main memory buffers of size 512. = 2° are available, and that an

external scratch dataset of size 215 is available. Let the notation (14 13 12 ... 2 1 0) denote the

binary digit positions in the binary expansion of an index in the 2.15-1ong input array. Then the
steps required to transpose this array can be compactly presented in Table 1.

1 of 4 5/15/2002 7:47 AIV



ArrayTranspositioninSSD http:llwww.nas.nasa.govlResearc...HTMLIRNR-89-O121RNR-89-O12.html

E1

M1

M2

E2

M1

M2

E1

PcrrmrtatJ()rm of D_sk B](K'.ks

Pm_rmltatiorm i= Maiz_ M(_n()_j

14 13 12. 11 10

7 6 14 13 12.

7 6 14 13 12. 11

7 6 5 4 3 14

7 6 5 4 3 14

7 6 5 4 3 14

7 6 5 4 3 2

9 8

11 10

5

13

13

2

1

7 6 5

9 8 5

4 3 2

12 Ii 2

12 II 2

1 013

O 1413

4 3 210

4 3 210

1 01098

1 01098

1 01098

12111098

1211 I098

Table 1: Transtxx_]ng a 128 x 2.56 Array Using Fraax:r's Alg()r]thm

The notation at the beginning of each line in Table 1 indicates the source of the data in each
operation: E1 denotes external dataset number 1, M2 denotes main memory buffer number 2,
etc. Note that the transfers between external memory and main memory only alter locations 6
through 14, and leave locations 0 through 5 unchanged (i.e., 64-long contiguous blocks are
preserved), and that transfers between two main memory buffers only alter locations 0 through
8 (i.e. only affect data within a single 512-1ong main memory buffer).

The first step, from external to main, involves fetching contiguous blocks of size 64 from disk
with a block stride of four (i.e. fetch the first 64-long block, skip three blocks, fetch the fifth
64-long block, etc.). The first step is done in batches of 8 blocks, so that 512 words are
fetched to one of the main memory buffers before proceeding. The second step, which is
performed between the two main memory buffers, is to transpose the resulting 512-1ong array,
considered as a 64 x 8 matrix, into a 8 x 64 matrix. In the third step, the eight 64-long blocks in
the main memory buffer are stored out to external memory, this time with a block stride of
eight. This completes one pass through the external data set.

In the next pass, eight contiguous 64-long blocks are fetched into main memory, and the
resulting 512-1ong array is transposed in a block fashion that preserves 8-long contiguous
sections. Finally, the resulting 64-long blocks are stored back to external memory, again in a
manner that achieves a certain block permutation. The array has now been transposed in just
two passes. With an adjustment of the parameters (for example, with a block size of 32 and a
memory buffer size of 1024), the transposition could be achieved in a single pass.

The author has implemented Fraser's algorithm on a Cray Y-MP running UNICOS, using SDS
space in SSD. The resulting implementation appears to be very effective, as can be judged by
the performance figures in Table 2. In addition to the CPU times listed, some I/O time was
logged as "'system time". As in many applications that use I/O, this system time can vary
wildly from run to run, depending on swapping and other system activity. When the system I/O
is not excessively busy, this time is generally about the same as the user CPU time listed in
the table.

2 of 4 5/15/2002 7:47 AM



Array Transposition in SSD http://www.nas.nasa.gov/Researc... HTML/RN R-89-012/RN R-89-012.html

Sirx; (ff M(n-m)z_ No, of CPU

matzix "bmcf'cr Pam(_s time

2.,0x 29

21° x 2.1o

2." x2_)

2I1 x '21°

211 x 2.11

213 x 2._

213 x 21°

2.13 x 2.11

2.14

218

2.14

2w8

2.14

2_8

214

218

214

218

21d

2.18

2.14

2.18

214

2)8

2

1

2

1

2.

1

2

1

2

1

'2

1

2.

1

2.

1

0.0449

0.0177

0.0886

0.0352.

0.0885

0.0343

0.1767

0.0685

0.3506

0.1353

0.1760

0.0678

0.3518

0.1349

0.6997

0.2-696

Ta})]c 2: Pcz_oz-ma_v_cc of b'_a_(n:'s _A_lgozit}u'_ on th(: Cray Y-MP

The Block Interchange Scheme

Although Fraser's algorithm is normally performed with a separate scratch dataset as indicated
above, it is possible to dispense with the scratch dataset if one is willing to relax the
requirement for a physically transposed array (by utilizing pointers to index to the external data
blocks). If such indexing is undesirable, there is another method that can be performed
in-place - it does not require a scratch dataset - although it can only be used in certain cases.

Consider first the case where nl = r_, so that the matrix is square. In that case a block
interchange technique can be used to transpose the array in a single pass, in place. This can
be done by simply considering the external nl x n_ matrix to be decomposed into square
blocks of size 6 on a side, where t, is the block size of an efficient I/O operation. The square
blocks down the diagonal can be transposed simply by fetching the blocks one at a time into
main memory, transposing them using any efficient main memory scheme, and storing the
resulting matrices back in the same locations. The off-diagonal square blocks can be fetched
in opposing pairs, transposed in main memory, and then stored back in opposite locations.
This scheme is described in Table 3.

All AI_ Ala A14

A_I A_ A2a A_

Aa, Aa_ Aaa Aa_

A_I A_2 A_a A_

m
m

Ai3Ah Ah Ah
Ai,A[,Ah Ah

Ta})lc 3: Th.c BI(K=k I_T_tclx_a.T_gc Algozith.m _or 'I'za__'p(_sin.g S(t_lmu: Azza_

Transposing matrices whose dimensions are powers of two in main memory on Cray systems,

3 of 4 5/15/2002 7:47 AM



Array Transposition in SSD http://www.nas.nasa.gov/Researc...HTML/RNR-89-O12/RNR-89-O12.html

using the straightforward scheme, results in performance reductions due to memory bank
conflicts, especially on Cray-2 systems. However, such arrays can be transposed completely
without bank conflicts by fetching and storing opposite diagonals.

When al -7#=_, the above scheme will not work. In cases where r_l = ar_9 or arh = rig, where a
is an integer, a more complicated version of the block interchange algorithm will still perform
the transposition in-place, although it requires two passes. In general, however, for
non-square matrices and for multidimensional arrays, it is better to use Fraser's algorithm.

Conclusion

Although it may at first seem intuitively "'impossible" to do so, large arrays can be transposed
in an external storage device such as SSD using exclusively long vector, unit stride data
accesses, with only one read-write pass. The algorithms presented in this note have these
attributes and are thus vastly more efficient than the straightforward schemes ordinarily
employed.

At present, there are no readily available library implementations of these algorithms. Thus it is
necessary for a programmer to code them and incorporate them into his or her applications.
The author is willing to offer some assistance in such efforts. His address is the following:

David H. Bailey
NASA Ames Research Center

Mail Stop T045-1
Moffett Field, CA 94035, USA
Telephone: 415-694-4410
Internet: dbailey@ewl 1.nas.nasa.gov

References

1. Fraser, D., "'Array Permutation by Index-Digit Permutation", Journal of the Association
for Computing Machinery, vol. 23 (1976), p. 298 - 309.

2. Swarztrauber, P. N., "'Transposing Large Arrays in Extended Memory", in
Multiprocessing in Meterological Models, G. R. Hoffmann and D. F. Snelling eds.,
Springer-Verlag, 1988, p. 283 - 287.

4 of 4 5/15/2002 7:47 AN'


